

Are we ready for On-line Sensor and Analyzer methods for Environmental Compliance Monitoring?

William Lipps NEMC August 2021

There are no or few USEPA approved methods for on-line analysis of water!

EPA approves methods, not analyzers

Methods include:

- Sampling
- Preservation
- Calibration Verification
- Duplicates
- Spikes
- LCS

No need for sampling and preservation information since analysis is immediate

Collection

Manual Sample Preserve Store

Analysis

Physical Treatment

Chemical Treatment

Measurement

Reporting

Report Generation

Review/React

There is no generation of a laboratory report, but a continuous feed of data to somewhere

A significant portion of a typical method is eliminated (sensors)

1 SHIMADZU

On-line analyzers include a few more steps than sensors

Definitions to consider

A <u>sensor</u> is a self contained device that produces a signal in response to analyte

- Examples of sensors are:
 - pH probes
 - Conductivity probes
 - Dissolved Oxygen probes
 - Temperature probes
 - Turbidity probes
 - UV absorbance probes

SHIMADZU

An <u>analyzer</u> is a device that processes a sample then measures an analyte

- Examples of analyzers are:
 - TOC instruments
 - Gas chromatographs
 - Atomic absorption spectrophotometers

ICP-MS is an analyzer

() SHIMADZU

In-Situ means that the measurement takes place in the sample

Endress + Hauser probe

<u>Continuous</u> measurements do not distinguish individual sample readings

<u>Discrete</u> measurements are distinguished as individual sample readings

Existing methods include "batch" QC steps that "must" be done according to 40 CFR Part 136.7

SHIMADZU

On-line analyzers can be automatically calibrated, sensors cannot

Methods should ensure that analyzers automatically recalibrate with multiple points Methods must ensure sensors are recalibrated at known intervals.

Online analyzer methods can automatically check the calibration

Methods should ensure that analyzers automatically verify the calibration in a fixed interval

Failed CCV should repeat calibration or flag Methods should ensure on-line sensor calibration is verified

SHIMADZU Method should require "blanks" if target analyte varies

The concept of "duplicates" does not apply, however precision should be evaluated

The on-line method should require a way to collect repeatability data

Stick the sampling straw or probe in a beaker at commissioning

The concept of "spikes" does not apply, however recovery should be evaluated

Recovery determined on commissioning

SHIMADZU

The concept of "LCS" does not apply, however precision and recovery should be evaluated

The on-line analyzer method should periodically evaluate an LCS

Sensor methods should compare data to approved lab method

Any new "method" for continuous on-line monitoring should:

- Standard methods for the Examination of Water and Wastewater
 - Developing new on-line analyzer methods

Online method approval may be easier if test is approved technique:

Nitrate Ammonia COD BOD TOC

Phosphate Nitrite Total phosphorus Total Nitrogen TOC

The on-line methods need QC acceptance criteria determined by multi-analyzer or multi-lab tests

A bunch of probes in a big bucket

A bunch of analyzers around a bucket

SHIMADZU Verify the calibration of multiple analyzers in same sample

Standard	Instrument 1	Instrument 2	Instrument 3	Instrument 4	Instrument 5
2 ppm	2.17	1.95	2.12	1.95	2.14
5 ppm	5.25	5.04	5.03	4.93	5.40
10 ppm	10.2	10.3	9.50	10.1	10.7
20 ppm	21.5	20.3	19.4	20.5	20.7
50 ppm	50.7	49.5	48.5	49.5	50.5
100 ppm	101	99.6	96	101	104
200 ppm	199	193	198	205	201

SHIMADZU Verify the repeatability of multiple analyzers in the same sample

Standard	Instrument 1	Instrument 2	Instrument 3	Instrument 4	Instrument 5
2 ppm	3.5	1.1	2.6	3.8	1.7
5 ppm	1.3	0.73	0.8	5.4	0.9
10 ppm	0.7	3.19	0.9	5.4	1.9
20 ppm	1.1	1.38	3.4	3.4	1.8
50 ppm	1.7	1.02	1.4	2.7	1.3
100 ppm	0.6	0.43	0.3	3.6	1.7
200 ppm	0.4	3.61	0.4	2.8	1.4

SHIMADZU

Collect overnight data collected at commissioning

Data from Carbon-In-Pulp (CIP) Leach Tank 5

On-line analyzer methods are needed if data is to be reported for compliance

Thank You!

Wclipps@shimadzu.com

For more information contact

